752 research outputs found

    Corner overgrowth: Bending a high mobility two-dimensional electron system by 90 degrees

    Full text link
    Introducing an epitaxial growth technique called corner overgrowth, we fabricate a quantum confinement structure consisting of a high-mobility GaAs/AlGaAs heterojunction overgrown on top of an ex-situ cleaved substrate corner. The resulting corner-junction quantum-well heterostructure effectively bends a two-dimensional electron system (2DES) at an atomically sharp 90o90^{\rm o} angle. The high-mobility 2DES demonstrates fractional quantum Hall effect on both facets. Lossless edge-channel conduction over the corner confirms a continuum of 2D electrons across the junction, consistent with Schroedinger-Poisson calculations of the electron distribution. This growth technique differs distinctly from cleaved-edge overgrowth and enables a complementary class of new embedded quantum heterostructures.Comment: 3 pages, 4 figures, latest version accepted to AP

    Kondo Effect in a Many-Electron Quantum Ring

    Full text link
    The Kondo effect is investigated in a many-electron quantum ring as a function of magnetic field. For fields applied perpendicular to the plane of the ring a modulation of the Kondo effect with the Aharonov-Bohm period is observed. This effect is discussed in terms of the energy spectrum of the ring and the parametrically changing tunnel coupling. In addition, we use gate voltages to modify the ground-state spin of the ring. The observed splitting of the Kondo-related zero-bias anomaly in this configuration is tuned with an in-plane magnetic field.Comment: 4 pages, 4 figure

    Singlet-Triplet Transition Tuned by Asymmetric Gate Voltages in a Quantum Ring

    Full text link
    Wavefunction and interaction effects in the addition spectrum of a Coulomb blockaded many electron quantum ring are investigated as a function of asymmetrically applied gate voltages and magnetic field. Hartree and exchange contributions to the interaction are quantitatively evaluated at a crossing between states extended around the ring and states which are more localized in one arm of the ring. A gate tunable singlet-triplet transition of the two uppermost levels of this many electron ring is identified at zero magnetic field.Comment: 4 page

    Vertical quantum wire realized with double cleaved-edge overgrowth

    Get PDF
    A quantum wire is fabricated on (001)-GaAs at the intersection of two overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via two-dimensional (2D) leads. A sidegate controls the density of the wire revealing conductance quantization. The step height is strongly reduced from 2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and mobility for both cleave facets with four-point measurements. The density on the first facet is modulated by the substrate potential, depleting a 2um wide strip that defines the wire length. Micro-photoluminescence shows an extra peak consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure

    Transmission Phase Through Two Quantum Dots Embedded in a Four-Terminal Quantum Ring

    Full text link
    We use the Aharonov-Bohm effect in a four-terminal ring based on a Ga[Al]As heterostructure for the measurement of the relative transmission phase. In each of the two interfering paths we induce a quantum dot. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots.Comment: 3 pages, 4 figure

    Anomalous Spin Dephasing in (110) GaAs Quantum Wells: Anisotropy and Intersubband Effects

    Get PDF
    A strong anisotropy of electron spin decoherence is observed in GaAs/(AlGa)As quantum wells grown on (110) oriented substrate. The spin lifetime of spins perpendicular to the growth direction is about one order of magnitude shorter compared to spins along (110). The spin lifetimes of both spin orientations decrease monotonically above a temperature of 80 and 120 K, respectively. The decrease is very surprising for spins along (110) direction and cannot be explained by the usual Dyakonov Perel dephasing mechanism. A novel spin dephasing mechanism is put forward that is based on scattering of electrons between different quantum well subbands.Comment: 4 pages, 3 postscript figures, corrected typo

    Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems

    Get PDF
    We have fabricated doubly clamped beams from GaAs/AlGaAs quantum-well heterostructures containing a high-mobility two-dimensional electron gas (2DEG). Applying an rf drive to in-plane side gates excites the beam's mechanical resonance through a dipole–dipole mechanism. Sensitive high-frequency displacement transduction is achieved by measuring the ac emf developed across the 2DEG in the presence of a constant dc sense current. The high mobility of the incorporated 2DEG provides low-noise, low-power, and high-gain electromechanical displacement sensing through combined piezoelectric and piezoresistive mechanisms

    Anomalous magnetoresistance peak in (110) GaAs two-dimensional holes: Evidence for Landau-level spin-index anticrossings

    Full text link
    We measure an anomalous magnetoresistance peak within the lowest Landau level (nu = 1) minimum of a two-dimensional hole system on (110) GaAs. Self-consistent calculations of the valence band mixing show that the two lowest spin-index Landau levels anticross in a perpendicular magnetic field B consistent with where the experimental peak is measured, Bp. The temperature dependence of the anomalous peak height is interpreted as an activated behavior across this anticrossing gap. Calculations of the spin polarization in the lowest Landau levels predict a rapid switch from about -3/2 to +3/2 spin at the anticrossing. The peak position Bp is shown to be affected by the confinement electrostatics, and the utility of a tunable anticrossing position for spintronics applications is discussed.Comment: 4 pages, 4 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure
    corecore